A

\
A

P\
/\
/ -

7\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

'\
A \
J=

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTiONs ¢ 0= ROVAL A

or—— SOCIETY

Studies on Magneto-Hydrodynamic Waves and other
Anisotropic Wave Motions

M. J. Lighthill

Phil. Trans. R. Soc. Lond. A 1960 252, 397-430
doi: 10.1098/rsta.1960.0010

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1960 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;252/1014/397&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/252/1014/397.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

[ 397 ]

STUDIES ON MAGNETO-HYDRODYNAMIC WAVES AND OTHER
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Department of Mathematics, University of Manchester

(Received 31 August 1959)

AL

_ CONTENTS
< S PAGE PAGE
S ~ INTRODUCTION : 398 7. EFFECT OF COMPRESSIBILITY ON MAGNETO-
& 43 2. MAGNETO-HYDRODYNAMIC WAVES IN A HYDRODYNAMIC WAVES GENERATED AT
= 5 COMPRESSIBLE, PERFECTLY GONDUGT- A SOURCE 416
s o ING FLUID 400 8. HALL-CURRENT TERM IN THE EQUATIONS
= u 3. ASYMPTOTIC SOLUTION OF LINEAR PARTIAL OF MOTION 419
—n DIFFERENTIAL EQUATIONS WITH CON- 9. HALL-CURRENT EFFECT ON MAGNETO-
5% STANT COEFFICIENTS 402 HYDRODYNAMIC WAVES 422
E; 4. GEOMETRICAL INTERPRETATION OF REFERENCES 426

(GRS
8 <0 THEOREM 1 FOR GENERAL ANISOTROPIC APPENDIX A. VELOGITY OF ENERGY PRO-

A
oz WAVE MOTIONS 407 PAGATION FOR A PLANE WAVE IN AN
E§ 5. CASES OF VANISHING GAUSSIAN CURVA- ANISOTROPIC MEDIUM 426
o

= TURE 408 APPENDIX B. APPLIGATION OF THE

6. APPLICATION OF THE RADIATION CONDI- METHODS OF THIS PAPER TO PROBLEMS
TION 412 WITH ZERO INITIAL CONDITIONS 427

There are two separate but closely interwoven strands of argument in this paper; one mainly
mathematical, and one mainly physical.

The mathematical strand begins with a method of asymptotically evaluating Fourier integrals in
many dimensions, for large values of their arguments. This is used to investigate partial differential
equations in four variables, x, y, z and ¢, which are linear with constant coefficients, but which may
be of any order and represent wave motions that are anisotropic or dispersive or both. It gives the
asymptotic behaviour (at large distances) of solutions of these equations, representing waves
generated by a source of finite or infinitesimal spatial extent. The paper concentrates particularly
on sources of fixed frequency, and solutions satisfying the radiation condition; but an Appendix is
devoted to waves generated by a source of finite duration in an initially quiescent medium, and to
unstable systems. The mathematical results are given a partial physical interpretation by arguments
determining the velocity of energy propagation in a plane wave traversing an anisotropic medium.
These show, among other facts not generally realized, that even for non-dispersive (e.g. elastic)
waves, the energy propagation velocity is not in general normal to the wave fronts, although its
component normal to them is the phase velocity.

The second, mainly physical, strand of argument starts from the important and striking property of
magneto-hydrodynamic waves in an incompressible, inviscid and perfectly conducting medium, of
propagation in one direction only—a given disturbance propagates only along the magnetic lines of
force which pass through it, and therefore suffers no attenuation with distance. There are cases of
astrophysical importance where densities are so low that attenuation due to collisional effects—for
example, electrical resistivity—should be negligible over relevant length scales. We therefore ask
how far the effects of a non-collisional nature which are neglected in the simple theory, particularly
compressibility and Hall current, would alter the unidirectional, attenuation-less propagation of the
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398 M. J. LIGHTHILL ON

waves. These effects have been included previously in magneto-hydrodynamic wave theory, but
the directional distribution of waves from a local source was not obtained. This problem explains
the need for the mathematical theory just described, and gives a comprehensive illustration of its
application.

1. INTRODUCTION

The elementary theory of magneto-hydrodynamic waves in an incompressible, perfectly
conducting fluid (Alfvén 1942, 1950; Walén 1944 ; Spitzer 1956; Cowling 1957) indicates as
a distinctive property of these waves that they do not spread out three-dimensionally
around a source of disturbances, giving ‘spherical attenuation’ (intensity diminishing as the
inverse square of distance from the source); instead, their propagation is purely one-
dimensional, along the magnetic lines of force, and hence without attenuation.

For example, if the undisturbed magnetic field is (B,, 0, 0), in the x-direction, then the
velocity vector v satisfies v oy

02 ;ala_kf, (1>

representing the propagation of disturbances purely in the x-direction, at the Alfvén
velocity a;, = By/./(4mp), where p is the density and the units are e.m.u.

One may think of the transverse motions as propagated like waves on a stretched string,
since a magnetic tube of force of unit area has mass p per unit length and tension B?/47
(coupled with a hydrostatic pressure B%/87, whose variations are however balanced by
those of the gas pressure). The longitudinal motions satisfy the same equation (1) because
they are directly coupled to transverse motions by the equation of continuity, div v = 0.

The inclusion of a finite electrical conductivity produces exponential attenuation of the
waves, but in many cosmical applications the conductivity may be presumed great enough
for this attenuation to be negligibly slow. Therefore, their lack of purely geometrical
attenuation makes magneto-hydrodynamic waves a convenient source of astrophysical
explanations: a disturbance at one point may originate from a disturbance at some far
distant point, which has travelled between the two along a line of magnetic force.

The object of this paper is to study how this distinctive property of magneto-hydrodynamic
waves is modified by the effects of:

(a) compressibility;

(b) the use of a more realistic equation for current in a plasma.

Magneto-hydrodynamic waves have already been much studied in the presence of both
these effects, especially (a) (Astrém 1951; Herlofson 1950; van de Hulst 1951; Lundquist
1952, etc.). This paper, however, directs attention to a particular issue: what is the
directional distribution of the waves produced by a local disturbance of given frequency ?
This gives a quantitative measure of such departure as there may be from pure one-dimen-
sional propagation.

In these problems it is convenient to specify the disturbance by means of three quantities:
the dilatation A = div v, the x-component of vorticity

dv, dv, -
g0 (2)
dy 9z
(where the suffixes denote components), and the x-component of rate-of-strain I' = dv,/dx.
These quantities completely determine v in infinite space, because first I determines v,; and,
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ANISOTROPIC WAVE MOTIONS 399

secondly, A—T" and £ determine (v,,v,), whose two-dimensional divergence and curl they
are.
When compressibility alone is taken into account, it is found that £ continues to satisfy the
one-dimensional equation
q P L% 3)

e~ Mg

although I' and A satisfy simultaneous equations of more complicated, three-dimensional
type, leading to spherical attenuation.

Therefore, any local disturbance does in part get propagated one-dimensionally, the part
in question being the component of vorticity along the magnetic lines of force. Far away,
where I'" and A have been attenuated to values small compared with §, the disturbance
becomes a purely two-dimensional (I' = 0), solenoidal (A = 0), vortex motion. Instead of
being convected with the fluid as such a disturbance would be in an ordinary conservative
field, it propagates (in both directions) along the magnetic lines of force.

Next, when the ratio of the Alfvén velocity ¢, to the sound speed g, becomes small, one
would expect the incompressible-flow approximation to become more and more accurate,
at least as regards the propagation of the longitudinal disturbance I'. In fact, we find that
although I' does suffer spherical attenuation, in the sense that its amplitude decreases with
distance r like 71, a more appropriate phrase would be ‘conical attenuation’, in that its
values are small in this case except within a narrow cone with apex at the disturbance and
axis along the magnetic line of force.

When the further complication () is taken into account, the equations are modified, in
a manner whose physical interpretation is that the magnetic lines of force are frozen into the
electron gas, rather than into the gas as a whole. In this case the whole disturbance is found
to suffer conical attenuation, spreading out within a cone whose angle is sin~!(w/w;), where w
is the frequency of the disturbance and w; is the gyro-frequency of the ions in the magnetic
field. Accordingly, it is only for frequencies w very low compared with w; that the falling-off
of intensity of a disturbance as it propagates along magnetic lines of force will be small.

To make the deductions from the equations which are required in these problems, it is
necessary to have a convenient technique for obtaining the asymptotic form at large dis-
tances of the fundamental (point-source) solution of a complicated system of coupled
anisotropic wave equations. The method for this purpose which is developed in §§ 3 to 6 is
believed to be novel, and may be found useful also in problems of anisotropic wave
propagation in elasticity, optics, etc. [Note added in proof. Buchwald (1959) has now
applied it to elasticity theory.] The fundamental solution is written down as a threefold
Fourier integral, whose asymptotic behaviour is then evaluated in terms of the locus of
singularities of the integrand, by use of ideas described, for example, by Lighthill (1958). The
result can be expressed in a simple geometrical form which helps one to visualize its
implications.

To add to the possibilities of use of this method in other fields of application, the main
results on asymptotic behaviour of threefold Fourier integrals, and of the solutions of systems
of equations of anisotropic, and possibly dispersive, wave propagation, are expressed in the
form of two theorems, which hold under definite sets of conditions, and from whose proofs
one can get the necessary ideas to tackle problems under different sets of conditions—some

49-2
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400 M. J. LIGHTHILL ON

of these ideas being discussed in § 5. The geometrical interpretation of the theorems is given
in detail in a separate section (§4); this material is not all original, but is essential to an
understanding of the subject.

The results become clearer physically from a study of the velocity of energy propagation in
a plane wave u = aexp [i(0¢t+ax+ fy +yz)], which, in any system that admits such a wave
for each (a, f, 7), the frequency w varying with (e, £, 7), is determined in appendix A as
— (dw/da, dw/df, dw/dy). This leads to an interpretation of theorem 2 as saying that energy
propagates purely radially from any source—even though the resulting wave crests may
have complicated, cuspidal shapes (see figures 4 and 7) and lie exclusively within some cone.

The paper deals mainly with waves generated by sources of fixed frequency, but the
effect of sources of finite duration is investigated in appendix B. The results are applied to
magneto-hydrodynamics waves, which the modification (4) mentioned above renders
dispersive, at the end of § 9.

The material of §§ 3 to 6 and the two appendixes was not published separately, because
the author preferred to expound this mathematical work in the context of the physical
problem, which givessuch a clear reason for asking the questions and such a clear illustration
of the method of getting the answers.

2. MAGNETO-HYDRODYNAMIC WAVES IN A COMPRESSIBLE, PERFECTLY CONDUCTING FLUID

We begin by writing down the equations of motion of a compressible fluid in a magnetic
field B, in electromagnetic units and with all terms of a dissipative character (due to finite
conductivity, to viscosity and to heat conduction) neglected. The hydrodynamical equa-

tions are P
0

% 1 div(pv) = 0, (4)
av B (curl B)AB
(ﬁt+v VV) —Vp+2 i (5)
d )
P v Vp = (a/;+v V), (6)

where p is the density, v the velocity vector, p the pressure, and 42 the derivative of p with
respect to p at constant entropy (so that a is the sound speed). The equation for the rate of

change of B is taken as JB
—- = curl (vaB), (7)
ot

which is the equation for the classical ‘perfectly conducting fluid’, whose basis will be

considered critically in § 8.

When the departures of p, v, p, a and B from uniform values p,, 0, p,, a, and B, (where B,
is a constant vector) are regarded as so small that their squares and products are negligible,
the equations (4) to (7) simplify to

dp . ov_ 1 (curl B)AaB,
%= P divv, %= o Vp+ T amp,

; 8
o ,dp IB (8)

% aoﬁt W:curl(VABO).
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ANISOTROPIC WAVE MOTIONS 401

Differentiating the second equation with respect to £, and using the rest to eliminate all the
variables but v, we obtain

v, . {curl curl (vaB, )}AB
oz = % grad divv+ anp, (9)
When B, = 0 this implies the familiar result that div v propagates at the speed of sound, a,,
while curl v remains unchanged with time.
In the presence of a non-zero undisturbed field B, it is convenient to choose one of the
co-ordinate axes, say, the s-axis, parallel to B,. Then (9) becomes

2
%z‘; _ qgrad divv+a2( 0, V2 +gg, Vo, %) (10)
where the components of v have been written as (v,v,,v,), and § = dv,/dy —dv,[dz is the

x-component of the vorticity curl v. In (10), g, is the Alfvén velocity By(4mp)~*

The system (10) of three coupled equations for v, v, and v,, which is of the sixth order, can
be reduced in complexity by a new choice of dependent variables. Thus, by writing down
the x-component of the curl of equation (10), we obtain for { itself the simple equation

2 2 2 2
whose physical implications were noted in § 1. Other variables satisfying simplified equa-
tions are . v
A=divv, F:ﬁ. (12)
From (10), we have % _ @VA+AVA(A—T), (13)
0?2’ ,0%A

and (14)

92 T a2
two coupled equations forming a reasonably tractable system of the fourth order.
The three quantities §, Aand ['determine v completely in infinite space, since I' determines

v, while the equations . dv. v
=—-2_"Y A-_TI'="yv 7’z 15
¢ dy 9z’ dy - dz (15)

determine v, and v,. It may be noted that although § is propagated one-dimensionally,
along the magnetic lines of force, no other component of the motion is; for example, the y-
and z-components of vorticity, 7 and {, satisfy

2%y (0% %A 020 (020  09%°A
oz~ (ax2 o az) BT A (ax2 z?x(?y) (16)
showing that only for incompressible flow (A = 0) do they satisfy the same equation as £; in
a compressible fluid their oscillations are coupled to those of A.

We now study in detail the angular distribution of waves from a localized disturbance,
concentrating on the distributions of I' and A, since the solution of equation (11) for § is
trivial. From (13) and (14), I' satisfies

2
012\ 0¢?

and the same equation is satisfied by A.

(a3-+4}) V7T + e @2,V =, (17)
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402 M. J. LIGHTHILL ON

Now, to represent the radiation from a localized disturbance, equation (17) must be
solved with a right-hand side which vanishes outside a finite region. This might represent the
action of hydrodynamic sources, or of external ponderomotive or electromotive forces; or,
simply, of the non-linear terms in the original equations, operating in some central region
where motions are too large for them to be neglected.

This right-hand side, or ‘forcing function’, is supposed to have a certain characteristic
length-scale / and frequency w, the relationship of whose product to g, and a; may be
expected from acoustic theory to affect the radiation produced. Asimple choice, for example,
would be

. 2 2 12]

e[ (2 g 4 22)] o
(1) 1)

However, there would also be interest in the limit of (18) as the length-scale / tends to 0 (see,

for example, Lighthill 1958), namely

Acid(x) 3(y) 3(2), (19)

and in combinations of derivatives of (18) or (19). For example, if a hydrodynamic point
source, producing ¢ ¢! units of mass per unit time, were present at the origin, then the first of
equations (8) would have ¢ ei“d(x) d(y) d(z) on the right, and it follows that the right-hand
side of (17) would become

B o 2 (@ V407) 2(3) 80) 2. (20)

Similarly, a distribution of such sources over a region of length-scale / would give a right-
hand side of

@B 1 9% ooa oy P (¥ 442 +2%)/P] .

Ty & V) UNGE (=1)
to the equation for I', and one of

B uryg2 (29 )CXP["(x2+y2+Z2)/P]

P \ (d 17x a5t ONDE (22)

to that for A. The effect on équation (17) of applied forces can be similarly worked out. The
method for obtaining the asymptotic solution, to be given in § 3, applies equally easily to all
such simple forcing functions.

3. ASYMPTOTIC SOLUTION OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS

The problem posed in §2 is that of finding the asymptotic behaviour as r — oo of the
solution of an equation of the form

g2 9% 92 92
P(at2)ax23 ayza azz) U= e“”f(x Y, Z), (23)

where P is a polynomial and f(x,y, z) is a function vanishing outside a restricted region.
Such problems can be solved formally by writing f as a threefold Fourier integral,

Swg2) = [ [ [ expliler+py+y2)] Flesfy) dadpdy. (24)
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ANISOTROPIC WAVE MOTIONS 403
Then we have
w=co (""" explilax -y 9] Ules ) dedpy, (25)

where substitution in (23) gives GU = F, of which a solution is
U = F|G, (26)
if we write G = P(—a?, —a2, — B2, —7?). (27)

To be sure, this is only a particular integral. The general solution is obtained by adding
a complementary function, namely, a solution of GU = 0, which, according to the theory of
generalized functions, can be written H§(G), H as well as G being a function of «, f§ and 7.
However, this multiplicity of the solutions disappears in physical problems because of the
‘radiation condition’, which states that all waves originate at the source and none ‘come in
from infinity’. It is convenient to put off discussing how to apply this condition mathe-
matically until § 6. Here and in §4 we investigate the solution (26); but the reader must
remember that slight modifications to the results will have to be made, as a result of the
arguments in § 6, whenever the solution which satisfies the radiation condition is required.

Accordingly, we now discuss in detail the problem (which also has other applications) of
estimating the integral in (25) as /(¥ +y2+22) = r — 00, when U takes the form (26) and
G is a known polynomial (27) in a, f and y. In vector notation, with r = (x,y,z) and
k = (a,/,7), the required integral, representing the amplitude «, of the fluctuations of u, is

Uy = fjfg%% eit-rdk. (28)

Now, the asymptotic behaviour of any Fourier integral can be expressed in terms of the
singularities of the integrand (Lighthill 1958). On the other hand, the function ¥ has no
singularities, since its Fourier transform f vanishes asymptotically to high order. We may
illustrate this point by noting that the values of ¥, corresponding to expressions (18), (19),
(20), (21) and (22), are

2
Aexp (), A B oo (gape ),

873 8w’ 8m3p, (29)
29
992 (282 —0?) exp (— WD), DL k(@202 — o?) exp(— 3422)
8773 pO 1 4 ) 8773 pO 1 4 )
respectively.
Accordingly, the singularities of the integrand in (29) lie entirely on the surface
G(a, B,y) =0, (30)

which we shall call §; it is the ‘wave-number surface’, or locus of points (a,f,y) such that
a plane-wave solution u = exp [i(wt+ax+fy+yz)] of the equation with zero right-hand
side (Pu = 0) exists. We can expect %, to be asymptotic to the integral over S of ei** times
some function of k; and hence, by the ‘principle of stationary phase’, to a sum of contribu-
tions from just those points on S where the exponent k.. r is stationary. These are the points
where the normal to the surface S is parallel to r.
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404 M. J. LIGHTHILL ON

The detailed result, which bears out this expectation, is best found by the following device.
We consider the asymptotic form of (28) as the point r tends to infinity along a particular
radius vector / through the origin. To do this most easily, we choose new co-ordinate axes
such that / is the positive x-axis. Then, having derived the answer, we express it in a form
invariant under rotation of axes, after which it must be correct even for the original co-
ordinate system, in which / was a line arbitrarily chosen. We now carry out this procedure.

In the new axes, a point r on / has co-ordinates (x, 0, 0), where x > 0, and (28) becomes

=" o[ ¢ ffﬁ? 7) ciosd, (31)

The inner integral can be evaluated asymptotlcally, for fixed £ and y, by the method of
treating single Fourier integrals given in Lighthill (1958, chapter 4). There is a contribution
from each value of @« where G = 0, so that (a, f, y) is on the surface S.

If G has a simple zero for each of these «, the inner integral in (31) is equal to

S F@BD) s oy
772 (/),’)e +O0(x7Y) (32)

as x — 00, for any N, if the suffix « denotes partial differentiation and 3 is a sum over those
g

values of « such that («,f,7) is on S. (Readers more familiar with a complex-variable
approach to Fourier integrals will recognize (32) as halfof (271) times the sum of the residues
of the integrand atits poles on the real axis; which gives the asymptotic behaviourasx— + oo
of the Gauchy principal value of the integral.) It follows from (32) that to a high order of

approximation
~i [ FLY) ((a ﬁ;;,,y) einndfdy (33)
as x — o0, the integral being over the whole surface .

However, if we are prepared to accept a lower order of approximation, we can obtain a far
simpler asymptotic form. This is achieved by the ‘principle of stationary phase’, which says
that the integral (33) is asymptotic as x — o0 to a sum of contributions from points on §
where «, the coeflicient of ix in the exponential, is stationary. These are points

kK, K, ...k, (34)

where the normal to S is parallel to the x-axis.

Let the contribution from any one of these points, say k,,, to the asymptotic form of (33)
for large x, be u,,. To evaluate u,,, we make now a further specialization of the choice of axes,
choosing the y- and z-axes in the principal directions of curvature at this point k,, (where the
x-axis is already given to be normal to the surface). If the associated curvatures, «; and «,,
assumed non-zero for the time being, are taken positive where concave to the x-direction and
negative where convex, then an approximate equation of the surface § near k = Kk is

@ = 3K (F—f)? 56, (V =) (35)
The principle of stationary phase then tells us that the contribution #,, to the asymptotic
form of ( 33) for large x will be

=i gk cor [ [ expLics(f—f) x+din (r—yn)? 1 Afdy.  (36)
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ANISOTROPIC WAVE MOTIONS 405

But, for any real % except zero,

f: exp [1A(f—f,)?] df = exp (}misgn k) A/(ﬁ) , (37)

because if % is positive one may put f—f,, equal to et { to evaluate the integral as a Gaussian
error integral, whereas if / is negative the necessary substitution is f—pf,, = e"#7i£. Hence,

(36) becomes U, = wif‘(}i’l’—)— elemt exp[1mi(sgnk,+sgnk,)] _am
TGk, AT TR L Ty )

The error in (38), according to the procedure for expanding to higher terms about the
position of stationary phase (Jeffreys & Jeffreys 1950) is O(x~2). The argument given above
is incomplete, as possible contributions from those values of # and y, for which the equation
G = 0 for o has double or multiple roots, have not been considered. These are points of
Swhere G, = 0, and one might at first expect from (33) that u, would asymptotically contain
contributions from these singularities, although to be sure the area element dfdy (which is
area projected on to « = 0) also becomes vanishingly small at such points. Actually,
a careful investigation by the same methods shows that there is no asymptotic contribution
from such points.

An alternative derivation of (38), which perhaps makes it more obvious that the only
contributions to the asymptotic behaviour of u, are from the points k,, where the normal to §
is in the x-direction, is by integrating (81) first with respect to § and y, and then asympto-
tically estimating the single Fourier integral that remains by the method of Lighthill (1958,

chapter 4). The function
[[w6) ey (39)

can be shown to have a singularity, as a function of «, only for values such that the plane
a = const. is tangent to the surface G = 0. This singularity, which is a logarithmic infinity
or a simple discontinuity according as «, and k,, have the same or opposite signs, leads to
the term in x~! given in (38).

We now express (38) in a form invariant under rotation of axes. To do this we replace x by
7 (which equals x in the existing axes, since r = (x, 0, 0) and # > 0), G, by + |VG| according
as VG is in the direction of +r (in one of which directions it must be, since the normal to the
surface G = 0 at k = Kk, is parallel tor); a,x by K,,.r and k,«,, by the Gaussian curvature
K of the surface. The Gaussian curvature is defined as the product of the principal curva-
tures, being positive where they have the same sign (synclastic curvature) and negative
where they have opposite signs (anticlastic curvature). It possesses a general expression
(see (43), below) in terms of the derivatives of G.

The substitutions just mentioned give

(38)

U

2 2 C‘Feik.t
= }H : (40)

"= VG|
where Catk =k, is (i) +-1if K < 0 and VG is in the direction of +r, and (ii) +1if K > 0
and the surface is convex to the direction of + VG. These values of C follow from the fact that
SgN K 3-+sgn Ky is zero if K < 0, while if K > 0itis 42 according as the surface is concave to
the direction 4r.

50 Vor. 252. A,
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Expression (40) is clearly unchanged if we go back to the original axes. Hence we have
THEOREM 1.

J_wf_w _wG ’ﬂ’ ))CXP[I(OW—F/)’er)/z)] dadfdy

CFex [1(ax+py+7v2)]
&e: p|V(C¥lJ|K|y +0 (?2)
as r—> oo along any radius vector 1, if the sum 2. is over that set (assumed finite) of points (a,f,y) of
the surface G = O where the normal to the surface is parallel to l; provided that the surface has non-zero
Gaussian curvature K at each of these points, and C is () 4-1 where K << 0 and VG is in the direction of
+1, (11) 4+ 1 where K > 0 and the surface is convex to the direction of + VG.
In particular, one solution of

(41)

9 92 9% 92 .
d ((9t2’ Frek ayz’aZZ) u = e y,2) (23 bis)
is asymptotically given by (41) if
1 20 o0 00 .
Faby) =g | || fen2epl—i@etpyiyalardydz  (42)
(the inverse of equation (24)), and
G(a, f,y) = P(—w?, —a?, —f2, —y?%). (27 bis)

To evaluate (41) one may use the general expression for Gaussian curvature of a surface
given by an equation G = 0, namely,

YG2(Gy G, —G3,) +256,4G, (GG,
(263)*

where the sums are with respect to cyclic permutation of «, § and y. The numerator is the
sum of nine terms, each formed by multiplying an element, for example G4G,,, of the matrix
of products of first derivatives of G, with the corresponding co-factor of the matrix of second
derivatives (typical element G, ). When the x-axis is an axis of symmetry, as in the magneto-
hydrodynamic problems considered in this paper, G takes the form f{«?, 2+ 7?), and then
with b = «2, ¢ = f249?% expression (43) reduces to

kSRS 2 2 fy o oo f) o S8 h) "

(¢ +-¢f2)? ’
while | VG| is 2,/(bf2+¢f2). (We note in parentheses that threefold Fourier integrals with
axisymmetry are commonly treated by conversion into Hankel transforms. However, the

Y Gfm G/?y) ,

K= (43)

author’s experience is that such conversion hinders their asymptotic evaluation, which is
more easily achieved, as here, on the original threefold integral, than on the twofold Hankel
integral with its more complicated integrand.)

To determine analytically (as required in case (ii)) whether the surface G = 0is convex to
the direction 4 VG, we need find only whether

26, (G3+G2) —25G,, G4 G, % 0. (45)

The left-hand side of (45) is in fact |VG|® times the ‘mean curvature’ (sum of the principal
curvatures), measured positive if convex to the direction G'increasing. In the axisymmetrical
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case, the equivalent condition is simply f, Z 0, because a surface of revolution is necessarily
concave to the axis of symmetry at any point of synclastic curvature.

To conclude this section we note that the same method of asymptotically estimating
Fourier integrals in many dimensions is available for singularities of the integrand other
than the simple poles here discussed. The initial step from (31) to (33) is different, and
follows the procedure described in Lighthill (1958, chapter 4). The subsequent work, using
the geometry of the locus of singularities, is as before.

4. GEOMETRICAL INTERPRETATION OF THEOREM 1 FOR GENERAL ANISOTROPIC
WAVE MOTIONS

The expression (41) represents a wave motion (indicated by the exponential), or more
precisely a combination of a finite number of different wave motions, subject to three-
dimensional attenuation (indicated by the 1/r factor). Note that every point on the wave-
number surface G = 0 produces a particular sinusoidal wave train in a particular direction.
This direction is that of the normal to the surface at the point; but the setting and spacing of
the waves is indicated by the wave-number vector («,f,y) = K: the wave crests are set at
right angles to this vector, and the wavelength is 27 divided by its magnitude. In general,
the directions of the wave-number vector k and of the normal to § are not the same, so that
the waves found in any direction are not set at right angles to it.

Note that normals to .S at more than one point may lie in some particular direction. In
such a direction, waves of different settings and spacings can be superimposed on one another.
To be sure, these remarks do not apply if the points are simply k and (—Kk), which
correspond to waves of the same setting and spacing; but, actually, itwill be shown in § 6 that
the solution which satisfies the radiation condition takes a form in which one only out of
each pair -k of points on the wave-number surface appears.

It is of interest to determine the shape of wave crests and troughs, and indeed of all

surfaces of constant phase, Kr—N (46)

where Nis any constant. Now, in (46), k and r are related, since r must be parallel to the
normal to S at the point k. This means that r is a simple multiple of VG, specified by (46) as

LN
“k.VG

Figure 1 shows that equation (47) places r in the direction of the perpendicular OD from
the origin to the tangent plane at k, while making its magnitude

r = NJOD. (48)

In geometrical language, r is the ‘pole’, with respect to a sphere X of radius ./N and centre
the origin, of the tangent plane to S at the point k. The locus S of such points, namely, poles
of tangent planes, is known as the ‘reciprocal polar’ of the surface § with respect to X. The
adjective ‘reciprocal’ reminds us that, conversely, the reciprocal polar of S is §; that is,
poles of tangent planes to S lie on § (so that S can also be regarded as the envelope of the
polar planes of points on S). To see this result, note that a tangent plane to S may be thought
of as the ‘join’ of three neighbouring points; hence its pole is the ‘meet’ of their polars,
which lies on § because they are three neighbouring planes tangent to it.

VG. (47)

50-2
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Actually, this converse result has a simple physical interpretation. For the wavelength,
that is, the perpendicular distance between surfaces (46) for phases N which differ by 27, is
clearly equal to (27/N) times the length of the perpendicular from the origin to a tangent
plane of S. But this length is N/k, where £ is the distance from the origin to the corresponding
point of § (pole of the tangent plane). Thus the reciprocal-polar relationship between the
wave-number surface and the surfaces of constant phase ensures that the wavelength is 27/%,
and is necessary to ensure it if the latter surfaces are to be geometrically similar to one
another.

Ficure 1. The vector VG, being normal to the surface G = 0, is parallel to OD, which makes an

angle 6 with OP = k. Hence
k.VG

k.VG = k |VG| cos 0, and OD = OPcosf = kcos O = el

The amplitude variation in equation (41) can also be given a geometrical interpretation.
Consider an elementary area d$ of the wave-number surface. The radius vectors /, which are
parallel to normals at points of this elementary area, fill a thin conical region whose cross-
sectional area ~ |K|r?dS. Therefore, the dependence on |K|~#r-! exhibited in (41) is
consistent with the idea that the waves whose wave-number vectors k lie in dS, and which
are found in this conical region, satisfy a sort of ‘conservation of intensity’, the flux of
|uy|? carried by them being independent of the surface geometry, and equal in fact to

4mtk?
,ZJO]QIKI TQdS:‘V—(;‘ZdS. (49)

This idea is certainly a very vague one, but may help to render intelligible the appearance of
K in theorem 1.

5. CASES OF VANISHING (GAUSSIAN CURVATURE

Theorem 1 referred only to the effect of portions of the wave-number surface with non-
zero Gaussian curvature K. We now make inquiries outside these limits.

First, consider a cylindrical portion C of the surface §. This can contribute to the asymp-
totic behaviour of #, along a radius vector / only if it is perpendicular to the generators
of C. The special axes which can conveniently be used to determine the contribution have
not only the x-axis along / but also the z-axis parallel to the generators. The normal to the
surface is then in the x-direction not at isolated points but along a whole generator. If the
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ANISOTROPIC WAVE MOTIONS 409
principal curvatures are k, and 0 along this generator, the surface C has near it the approxi-
mate equation o=a, %Kﬂ (B—5.)% (50)

with y taking any value in a certain interval (a, 4). The contribution ,, to the asymptotic
form of (33) for large x is then

3
u,, = i exp (ia,x+ fmisgn,) (;c%) Iy, (51)
)
? F(s s ¥)
wher I :f Z\Immd ) qy, 52
ere ") Gl B ) o2

Equation (51) could easily be put into invariant form, since &4 is equal to the mean curva-
ture, for which an invariant expression was quoted at the end of § 3. However, the main
thing to notice is simply the dependence on r~# instead of 7~!. This is characteristic of the fact
that the waves discussed are propagated cylindrically, that is, only in directions at right
angles to the generators of the cylinder.

It may be asked: how can there be an asymptotic contribution (51) along every such
direction, but not along other directions however close? At first sight, there seems to be a
discontinuity, a delta-function dependence on angle.

However, in the spatial variation of u, there is no discontinuity, as is seen if we consider
a point slightly off the radius vector /, one which in the special axes introduced above has co-
ordinates (x, 0, z), so that it does not lie on a radius vector perpendicular to the generators.
To obtain the value of %, at this point, a factor e”* must be included in the integrand of (33),
so that the asymptotic form is (51) but with I replaced by

L= gw——(g‘;m% V) cireay, (53)
o Gal@s s 7)
Now, I, > 0 as |z| - oo by the Riemann—-Lebesgue theorem, so that there is only a fixed
finite range of z within which u,, is significant.

This means that u, represents a collimated cylindrical wave of finite width, lying
everywhere within an infinite disk—a situation physically impossible for isotropic, but not
for anisotropic, wave motions. It explains why the asymptotic contribution u,, vanishes on
every radius vector not perpendicular to the axis of the disk, since any such radius vector
stretches ultimately outside it.

In the extreme case when the portion C of surface is plane, an asymptotic contribution «,,
arises from C only along the particular radius vector [ which is at right angles to C. In axes
such that the plane is « = a,,, this contribution is

u,, = mi elam ff éi dgdy, (54)
CYa

representing an unattenuated, plane wave. Aninvestigation like that given in the cylindrical
case shows that this is a collimated beam of finite diameter, which is why no asymptotic
contribution appears on radii other than /.

Similar considerations to those described above for cylindrical portions of S apply also in
the general case of any portion D on which the Gaussian curvature K is identically zero.
Such a portion D of surface is ‘developable’, that is, deformable into a plane (without
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stretching). All conical as well as cylindrical surfaces are in this category, and the general
developable surface is the envelope of a singly infinite family of planes P, each touching
the surface along a whole straight line L.

Such a portion D of § makes a contribution to the asymptotic behaviour of «, along
a radius vector / only if / is perpendicular to one of these tangent planes P. The contribution
is obtained by taking the x-axis along /, as usual, and the z-axis in the direction of L, the line
(or segment of a line) in which P touches D. The analysis is as above, except that x; now
varies with y along the line L (while «,, is still zero), so that instead of (51) we have

U, = m( ﬁ) e‘“mxf exp [TZ;SgnKﬂ( )]C};‘dy (55)

As before, we have attenuation like 7~ along a singly infinite set of radii (those perpendicular
to the tangent planes of D), and within a certain bounded distance of the conical surface
formed by these radii.

c bod a.e -

74/

Ficure 2. Successive tangents, 4, b, ¢, d, ¢ to the plane curve § (where ¢ is the tangent at its point of
inflexion) have poles 4, B, C, D, E. The locus, S, of these poles has a cusp at C.

We pass next to cases when the Gaussian curvature vanishes, not throughout some portion
of S, but only on a curve M, which divides the wave-number surface into synclastic (K > 0)
and anticlastic (K < 0) regions. Such a curve on which K has a first-order zero is sometimes
called a parabolic curve; we prefer to call it monoclastic (locus of points where the surface
is singly curved). In this case theorem 1 specifies the asymptotic form of uyon all radii except
those which are in the direction of the normal to $ at some point of the monoclastic curve M.

The shape of a surface of constant phase thus predicted, namely, the reciprocal polar of S,
has an ¢edge of regression’ (‘ cuspidal edge’) corresponding to the monoclastic curve. Figure 2
illustrates the two-dimensional form of this result, showing how the reciprocal polar of
a plane curve has a cusp corresponding to any point of inflexion (point of zero curvature).
The general result is most easily seen if the equation of the surface be written as y = g(«, §),
when the Gaussian curvature (43) becomes

‘gowcgﬂ,b’ gaﬂ (56)

(1 +ga+g/ﬁ’)

and the parametric equation of the reciprocal polar (47) becomes

= N . (gow gﬂ) _) (57)
g, +P8p—8
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In (57) the point (g,, g5, —1) fills an area of the plane z = —1 which folds back on itself
along an edge, corresponding to the monoclastic curve K = 0, on which the Jacobian
0(84:85)/0(, f) vanishes. Division by ag,+/fg,—g converts this edge into a more general
edge of regression, the reason why it cannot open it up into a smooth surface being that the
gradient of this denominator is parallel to the gradients of g, and g,—which are themselves
parallel if K = 0, being tangent to the edge itself.

Another approach to this result uses a relation, which is in any case worth quoting,
between the curvature K of S and the curvature K at the corresponding point of S. This is

- sinf¢

KK = N2~ ) (58)

where ¢ is the angle between the radius vector and the tangent plane (¢ has the same value
for a point on S and for the corresponding point on §). From (58) it follows that, when
K =0, K= oo (corresponding to an edge of regression), unless ¢ = 0, when one of the
points must be at infinity.

By either argument we see that surfaces of constant phase are cusped along edges, corre-
sponding to any monoclastic curves of §. To obtain the amplitude variation in the direction
of a cuspidal edge, we must modify the analysis leading to theorem 1, beginning at equa-
tion (35); for since K = 0, one of the principal curvatures, say «,, is zero, and the more
accurate approximation

X =y +%Kﬂ(ﬂmﬂm>2+iy(7_7m)3 (59>
to §'is required. Using the equation
® . D3
[ exp it —r1ay = h, (60)

we deduce that

L F(k,) . 1
4, = mmexp [ia,, %+ zmisgn k] (x

2m \} ()13
o) (i (D)

The most important point to notice is that the wave amplitude decays like =% in the direc-
tion of the cuspidal edge, a rate of decay intermediate between those for cylindrical and
spherical waves. To obtain a continuous variation between this result and the decay like 7!
which obtains on neighbouring radii one would have to retain both square and cube terms in
¥ —7.., leading to an answer involving the Airy integral. This analysis is omitted.

A final special case, which combines features of the discussions of both developable
surfaces and monoclastic curves, is that in which, although §'is not developable, normals to it
lie in one particular direction /, not at a finite set of points (as assumed in theorem 1) but
along a whole curve M. For example, this is so for a torus if / is its axis of symmetry. It
may be shown that such a curve M is necessarily monoclastic, but instead of the corre-
sponding curve on § being an edge of regression, the edge collapses into a single point,
near which § has the shape of a double cone with it as vertex. The asymptotic contri-
bution to %, on [/ from the curve M is analyzed by the method leading to (55), and the
answer is the same with L replaced by A4, y by an arc-length along M and «, by the non-zero
principal curvature on M. Therefore, [/ is an isolated direction in which the waves decay
like 7~* and the surfaces of constant phase have conical nodes.
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6. APPLICATION OF THE RADIATION CONDITION

It was pointed out at the beginning of § 3 that the solution of our differential equation (23)
with given right-hand side is not unique, in that any complementary function (solution of
the equation with zero right-hand side) can be added on to the particular integral so far
studied. However, in any physical application only one solution is of interest, namely, that
which satisfies the ‘radiation condition’. This states that only waves originating at the
source are present; no free waves are crossing the field from one side to the other, or simul-
taneously coming in from infinity in all directions. In this section, and in appendix B,
different ways of applying the radiation condition, to derive the unique solution appropriate
in such physical problems, and its asymptotic behaviour, will be discussed.

The simplest approach from a mathematical point of view is to replace w by w—i¢, where
¢ > 0, and afterwards to let ¢ — 0. The physical idea behind this is that the source strength

is being taken as exp [i(0—ie)t] f(x,y, 2), (62)

which increases exponentially with time like e®, while the solutions sought are also propor-
tional to exp [i(w—i¢) ¢], and so increase their amplitude in step with the source strength.
Suppose now that the solution were contaminated by the presence of any waves ‘coming in
from infinity’, and starting on their journey inward at time £, their amplitude being of
order e, comparable with that of the waves generated at the source. Being free waves,
these would not increase exponentially with time, so that on reaching the neighbourhood of
the source they would still have amplitude of order e¢. But, by then, this would be negligible
compared with e, the order of magnitude of waves generated at the source, because of the
very large time needed for the free waves to come in from infinity. Hence, if we seek only the
solution of order e¢, they must be absent.

Accordingly, with the source strength as in (62), this solution proportional to
exp [i(w—ie) t] is the unique solution satisfying the radiation condition; and we may expect
that its limit as ¢ — 0 is the unique solution of the original problem which satisfies that
condition. This limit will now be determined, while, at the end of this section and in
appendix B, different checks on the conclusion will be made.

The main alteration which occurs, when o is replaced by w —1ie, is in the initial estimation
of the inner integral in (31) for u, (where now u = exp [i(w —i¢) t] 4;). The denominator G is
slightly changed by the said replacement, and its approximate new form is

G—iedG[ow, (63)

if G stands for the original G (with ¢ = 0) and dG/dw refers to the fact that equation (27)
makes it a function of o as well as of @, £ and .

Accordingly, the zeros of the denominator are slightly changed. Instead of being those

real values of e where G = 0, they are displaced to slightly different, and in general complex,
positions. Near a real simple zero « = a, of G, the denominator (63) is approximately

(a—ay) -a?‘z—ieaﬁw, (64)

which vanishes at @ = ay+ie 3G o’ (65)
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so that the displacement is into the upper half plane if
1G/dw
ﬁG/(?
and into the lower half plane if the opposite inequality holds.

Now, the inner integral in (31) can be asymptotically estimated as ¥ — + oo by shifting
the path of integration to the line Jo = £ > 0 (reducing the order of magnitude of the in-
tegral to e, which will be neglected) and adding on 271 times the sum of the residue of the
integrand at all poles with 0 < Ja < 4. For suitably chosen % and small enough ¢, these poles
are at those values of (65) for which the inequality (66) holds. The residues are approxi-
mately F/G, for small ¢. Hence in place of (32) we have

>0, (66)

2ri 3 L( /2’,7)5 el O(x-Y), (67)
where 3 is a sum over those values of a such that («,f,y) is on S, the part of § where (66)

S+
holds. Thus, the contribution of those zeros of G where (66) holds has been doubled, and

that of the others annulled.
Accordingly, equation (33) is replaced by

~ 2mi f f . g ((“ ’/5;):,7) el dfdy. (68)

The estimation of this integral now follows exactly the course taken in § 3 for the integral (33),
leading to an expression as a sum of terms (38), but doubled and restricted to those k,,
which are on §, . They are next putinto a form invariant under rotation of axes. At the same
time, the condition (66) must be put into such a form, as
r.VG
9G|dw
where the fraction has been inverted for convenience later on. We can now state theorem 2

>0, | (69)

below.

Before doing so, however, we note one point in the argument which (like the corre-
sponding point in the proof of theorem 1) might give pause to some readers. This is the
possibility of an asymptotic contribution to (68) from curves on S, whereG, = 0 (so that the
x-direction is tangential to Sinstead of normal), which for non-zero G, (as obtains in practice
for reasons to be given below) would be boundary curves of S,. A special investigation,
studying among others the contribution from a line £, y = const. which just fails to touch the
surface at such a curve, is necessary to satisfy oneself that the sum of all such contributions is
zero.

As in § 3, however, this is more obvious from an approach in which the integrations with
respect to f and y are carried out first. The function

V() =i f f B 0Y) F(a,p,7) 70

<OC el—l;l(} — G /5): Y, _16) ﬁ 7 ( )
can be shown to have singularities only for values of « such that the plane « = const.
touches the surface G = 0. The singularity of V(a) at a = «,, is like

Fk,) ) 2mi
G.(k,) JIK

51 VoL. 252. A.

|{¥log[oc &, +¥misgn (e —a,,)} (71)
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if K< 0, and like
Fk,) 2n i
G ((k )) g s8n (kg 1) {log |a—a,| + 3misgn (2—a,,)} (72)

if K > 0, the upper sign being taken in each if (66) holds and otherwise the lower. (In the
parallel investigation which was noted in § 3, the terms of variable sign in (71) and (72) are
simply absent.) From table 1 of Lighthill (1958), we can now determine the asymptotic
form as x - + oo of the Fourier transform

Uy = [: V(a) el da; (73)

it comes out as (38) multiplied by 2 if the upper sign has been taken, by 0 if the lower has
been taken, and by 1 if the terms of variable sign are suppressed. This checks the previous
conclusions; and, in particular, we have

TaEOREM 2. The solution of

g2 92 9% 092 .
(572,5;2, 3y’ a—zé) u=e“f(x,y,z), (23 ter)

which satisfies the radiation condition, is asymptotically
_4m?elt [ CFexp [i(ax+fy+7yz)] 1
B v (]

as r — oo along any radius vector 1, if the sum 2 is over all points (a, f,y) of the surface G = 0 where the
normal to the surface is parallel to [ and (r.VG)/(0G|0w) > 0, provided that the surface has non-zero
Gaussian curvature K at each of these points; that C is (1) 41 where K < 0 and VG is in the direction
of 1, (1t) +£1 where K > 0 and the surface is convex to the direction of +VG; that

(74)

Fobn) =g | | [ Snp2)expl—ilox+py+y2))dedydz;  (42bis)

G(a’ﬂ’ 7 “)) = P("w2> —a?, _ﬂZ: “7’2)° (75)
The restriction (69), to which we are led by this mathematically simple method of

applying the radiation condition, has a direct physical interpretation. In any plane wave

u = aexp [i(wt-+ox-+fy+y2)] (76)

travelling through a conservative system, for which the laws of mechanics lead to an
equation G(a,f,y,0) = 0 relating frequency and wave number, the velocity of energy
propagation (group velocity) can be determined as

R
= 3G a0 (77)

and that

The most general approach to proving this result is an extension to three dimensions of the
energy argument of Rayleigh (1894, p.479); this does not seem to have been given before
and therefore is set out in appendix A.

Accordingly, the restriction (69) is simply r. U > 0, which has the clear physical inter-
pretation that the only waves occurring are those for which the velocity of energy propaga-
tion has a positive (outward) component along a radius vector. In other words, all the energy


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANISOTROPIC WAVE MOTIONS 415

is created at the source ; none comes in from infinity. This gives a check on the mathematical
method by making physical sense out of the answer.

Indeed, equation (77) makes physical sense out of other aspects of theorem 2, which
states that r is actually parallel to VG, and hence to U; thus, energy spreads outwards from
a source directly along radii. However tortuous the surfaces of constant phase, the energy
follows a straight line path.

Finally, equation (77) justifies us for having ignored, when proving theorem 2, the
possibility of critical cases when dG/dw = 0 (rendering indeterminate whether the pole of G
as function of «, given to a first approximation by (64), is above, below, or on the real axis),
since these would correspond physically to an infinite velocity of energy propagation, which
is impossible.

We end this section with notes on the special case of non-dispersive waves. These are waves
governed by an equation (23) in which the polynomial Pis homogeneous in its four variables,
as in the case of equation (17). Then the phase velocity w/k is independent of wavelength
for plane waves travelling in a fixed direction.

If P is homogeneous of degree 7, then G is homogeneous of degree 2z, and by Euler’s
equation for homogeneous functions

wdG[dw+K. VG = 2nG = 0 (78)

throughout the wave-number surface G = 0. Hence (69) requires that k. VG and r. VG are
of opposite signs. Since r and VG are parallel, we conclude that for non-dispersive waves the
restriction in theorem 2 takes the simple form

K.r <O0. (79)

In this case, then, only waves whose phase velocity has an outward radial component are
present.

However, phase velocity and group velocity must not be confused, even for non-dispersive
waves, in an anisotropic medium. The group velocity (77) can by (78) be written

U = —wVG/k. VG, (80)
while the phase velocity ¢, written as a vector, is
c = —uwKk/k%. (81)

From (80) and (81) we see that U.k = c. k; thus the resultant of U in the direction of ¢ is c.
In other words, the speed of energy propagation normal to the wave fronts is the phase
velocity. But U has in general a component normal to ¢; thus, in a plane wave, energy may
be propagated parallel to the wave fronts. Indeed, whenever the wave velocity varies with
direction this is so, and it can easily be shown that the speed of energy propagation along
a line in the wave front is minus the rate of change of wave speed with angle as the direction
of propagation sweeps along that line.

To check this result, Mr D. R. Bland has kindly investigated the case of a plane elastic
wave in a general anisotropic solid, calculated the energy propagation velocity from the
product of stress tensor and velocity vector, and obtained a value in agreement with (80).

This fact, that plane waves are possible only if there is an energy supply transmitting
energy parallel to the wave fronts, re-emphasizes how unrealistic is a treatment of anisotropic
wave motions in terms of plane waves alone.

5I-2
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7. EFFECT OF COMPRESSIBILITY ON MAGNETO-HYDRODYNAMIC WAVES
GENERATED AT A SOURCE

We now apply the mathematical theory of the last four sections to the partial differential
equation (17), which is satisfied by I, the rate of strain along magnetic lines of force, in the
theory of small disturbances to a compressible, perfectly conducting fluid in a uniform
magnetic field. Possible right-hand sides to the equation, which can represent sources of
magneto-hydrodynamic waves, were noted in equations (18) to (22).

a=3 215 1
15—
1-0—
ES
+ &~
>
~= 15
05 g M, M
3 M
|
0 05 16 15

o

Ficure 3. Compressibility effect on the shape of §. For gy/a; = 1, 1:5, 2, 3 and oo, § is obtained by
rotating about the a-axis these curves together with their reflexions in the plane a = 0. At the
top of the figure the asymptotes of the curves are shown. The unit of wave number is w/a,. The
points of inflexion, marked M, become monoclastic curves on § after rotation.

The theory gives results in terms of the geometry of the surface S whose equation is G = 0,
where by (17), (23) and (27)

G = w¥{w?— (a}+a?) k?} + adal o k2. (82)
Solving G = 0 for f%-+y? (that is, A2 —a?), as

f2y? = (0*—a§a’) (0®—aia?) (83)

2 N, 2 2,.2,.2
(ag+a}) w* —afaia

we see that S is a surface of revolution, with axis the a-axis and a plane of symmetry ¢ = 0; it
is in three sheets, one an ovoid of major axis w/a, and minor axis w/,/(a3+ a?), and the other
two consisting of the planes @ = 4w ./(a5%+a7?) distorted by bumps near the x-axis, which
réduce the distance between the distorted surfaces to twice w/a,. (In this description it has
been assumed that @, < a,; otherwise the description is still correct if in it ¢, and «, are
interchanged.) Figure 3 illustrates the shape of S for the values 1, 1-5, 2, 3 and oo of the ratio
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ay/a,, taking w/a, as the unit of wave number in each case. Note that the values 1, %, 1, 1 and
0 of the ratio a,/a, are also covered by figure 3 if w/a, be taken as the unit of wave number.

The limit ay/a, = oo is the incompressible case, when .§ degenerates into the two planes
@ = +w/a, and the ovoid collapses to a point. This shape for S, of two planes perpendicular
to the x-direction, corresponds according to the theory of § 5 to the physical property (§1) of
magneto-hydrodynamic waves in an incompressible, perfectly conducting fluid, that the
motion propagates only in the x-direction (normal to the said planes) and without
attenuation.

Frcure 4. Compressibility effect on surfaces of constant phase. For a,/a, = 2 this shows two surfaces
of constant phase generated by the ovoid sheet of § and two generated by the distorted-plane
sheet (only the part with ¥ > 0 in each case). The phases, from left to right, are in the ratios
1:1-08:5:5:4.

For finite values of the ratio ay/a,, the planes form bumps as noted above, so that one-
dimensional propagation of values of I' ceases, although it was shown in §2 that one-
dimensional propagation of values of £, the vorticity component along magnetic lines of
force, is retained. Waves whose wave-number vectors lie on the distorted-plane sheets of S
are present along each radius parallel to the normal at some point of those sheets. Such radii
lie within a right circular cone N, whose generators are parallel to the normals at points of
the monoclastic curve M, a circle which intersects a given meridian plane (for example,
figure 3) at the point of inflexion, marked A on each curve.

From the theory of § 5, the surfaces of constant phase within this cone (which are reci-
procal polars of the distorted-plane sheets of §) have cuspidal edges corresponding to the
monoclastic curve M, and therefore lying on the cone N. Figure 4 shows these surfaces in the
case ag/a; = 2, when the semi-angle of the cone is 4-7°. For higher values of the ratio a,/a, one
finds that the semi-angle to a close approximation is (% ./3) (a,/a,)? radians, or 18-6(a,/a,)?
degrees.

A further effect of ay/a, being finite is that a new system of waves, associated with the ovoid
branch of S, appear, and these can obviously be identified with sound waves. The associated
surfaces of constant phase are also drawn in figure 4, for ¢,/a, = 2; their distortion from the
spherical shape is due to the magnetic restoring force which acts upon transverse movements,
and increases the sound speed from q, along magnetic lines of force to ,/(a3+a}) at right
angles to them.
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We may ask at this stage: what governs whether a given type of source generates princi-
pally sound waves or magneto-hydrodynamic waves? The answer depends on the presence
of the F factor in the result of theorem 2, F being the Fourier transform of the source
strength. The waves produced are mainly those associated with parts of $ where F'is not small.
Thus, Fourier components in the source strength with small wave number tend to generate
sound waves, and those with large wave number magneto-hydrodynamic waves. For an
extended source of dimension /, /' becomes small as £/ becomes large (see the exp (— ££%?)
terms in (29)), so that the outer parts of the distorted-plane sheets of §' do not contribute,
and therefore the parts of the constant-phase surfaces of figure 4 which make a small angle
with the axis must be absent.

1/|VGIJIK]

FiGURE 5. Variation of the amplitude factor 1/|VG|,/|K| with direction 0 for gy/a, = 2.
The numbers on the curves are values of ¢, the angle between wave crest and x-axis.

Equations (21) and (22) show how the distributions of I' and of A = div v may differ. In
this case, of a motion generated by a distribution of fluctuating mass-sources, the values of
F for the propagation of I and A, respectively, are given by the last two expressions in (29).
In the case of A, F is especially small on the distorted-plane sheets of S, since « = w/a, on
these. Thus, magneto-hydrodynamic waves for small a,/a, are practically equivoluminal,
I" being much greater than A.

The volume of sound generated in this case will depend on the value of /. The maximum
of k2exp [ — 1k%?] is at k = 2/I, so that, if this is much greater than w/a,, and especially if it
exceeds w/a;, less sound than magneto-hydrodynamic waves will be generated. If doublets
instead of sources were the producers of sound, an additional factor k. n (n being the doublet
direction) would be present in (29), which would accentuate the effect.

Another difference in intensity between sound waves and magneto-hydrodynamic waves
arises from the 1/,/| K| factor in (74), which is obviously greater on the distorted-plane sheets
of S than on the ovoid sheet. This factor increasing the relative intensity of magneto-hydro-
dynamic waves can be regarded, according to arguments given at the end of § 4, as due to their
being concentrated in a narrow cone, while sound waves can freely spread in all directions.

The distribution of wave amplitude with direction inside this narrow cone can be inferred
from figure 5, which plots 1/|VG|/ |K| against § = cos~!(x/r), the angle between radius
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vector and x-axis. Values of ¢ = sin~!(a/«), the angle between the wave crests and the x-axis,
are noted on the curve. The ordinate needs to be multiplied by (472/r) F, a factor depending,
as discussed above, on the details of the source, to give the wave amplitude. For any source
ofnon-zero length scale, the rapid decay of F as £ - oo will bring the upper branch of figure 5
down to zero (instead of increasing to infinity) as # — 0. Also, by § 5, the infinite amplitude
on the conical boundary, where the waves have cusps, is not exact; there is really decay like
r~¥ instead of like 7! along this boundary.

It has been seen that a fairly precise measure of the degree of departure of magneto-
hydrodynamic waves from strictly one-dimensional propagation, as a result of compressi-
bility, can be given by means of the mathematical theory which has been set out. We now
consider modifications due to another effect neglected in the simple theory.

8. HALL-CURRENT TERM IN THE EQUATIONS OF MOTION

The situations, mainly astrophysical, in which dissipative effects are small enough to
permit the propagation of magneto-hydrodynamic waves without rapid attenuation, involve
a high-temperature, low-density plasma of electrons and positive ions. We investigate now
whether equation (7), used in §2 for the rate of change of magnetic induction, is a good
approximation in such a plasma.

This equation stems from the basic Maxwell law of induction,

0B[0t = —curlE, (84)

and the idea that the Lorentz force on a particle moving with velocity v, namely E+vaB,
must vanish in a perfectly conducting fluid, because charge displacements such as reduce it
to zero take a negligible time.

The difficulty with this argument is that v is not the velocity, or even the mean velocity, of
the particles responsible for charge displacements, namely, the electrons. This is because, for
the hydrodynamical equations (4) and (5) to hold, v must be the momentum of the gas per
unit volume, divided by its density. Hence, the mass m; of the ions being over 1800 times the
electronic mass m,, v must be far closer to v,, the mean velocity of the ions, than to v,, that
of the electrons.

In fact, if n; and 7, are the number densities of ions and electrons, we have

— nm;v; + n, meXg

=nm.+nm v
,0 et [ 24 nimi_!—neme

(85)
Also, if Z is the average charge of the ions, we have to a very close approximation n, = n; Z
(electrical neutrality) ; for, after any calculation of the electric field E (such as we are engaged
in), the net charge density can be determined as (div E)/47¢? in e.m.u., which is always very
small indeed compared with the electron charge density (—en,) because of the ¢2 in the
denominator. Itfollows that (n,m,)/(n;m;) = Zm,/m; < +5%5, so that (85) places v extremely
close to v;. Furthermore, the current density j is

j = e(”iZVi_ neve) = ene<vi_ve) = ene(v_ve), (86)
and therefore the mean velocity of the electrons is approximately

vV, =V—jlen,. (87


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

420 M. J. LIGHTHILL ON

Of course, the spread of electron velocities about their mean v, greatly exceeds that of the
ion velocities about Vv;, the ratio of standard deviations being for example, (m;/m,)?, in
thermodynamic equilibrium. Thus, the pressure p is made up of an electron pressure p, and
an ion pressure p; which are of the same order of magnitude, being in the ratio n,/n, = Z in
thermodynamic equilibrium.

We return now to the problem of determining the rate of change of the magnetic induc-
tion B, given the existing value of B, and hence that of the current density,

j = (curl B) /4. (88)

The idea that E +vaB vanishes has already been criticized ; this is the mean Lorentz force
on the ions, which in practice will be balanced against their rate of change of momentum.
However, one might expect the rate of change of electron momentum to be far smaller, in
which case it would be more accurate to put E+v,AB = 0.

The true situation is a little more complicated, because the rate of change of electron
momentum per unit volume includes terms due to the large random fluctuations of electron
velocity about their mean v,. By the definition of pressure in terms of momentum flux, these
can be written as the gradient of electron pressure, Vp,. Therefore, if we are willing to
neglect the electron-inertia effects, and the momentum exchange between electrons and
ions (the electrical-resistivity term), we can balance Vp, against the Lorentz force per unit
volume on the electrons, —n,¢(E+v,aB), to give

B

" = —curl E = curl (veAB+-V£€) — curl (v,B). (89)

n,e

Here, the curl of (Vp,) /n, has been put equal to zero on the ground that the electron pressure
p, will fluctuate in a direct functional relationship to the density and so also to n,.

The standard equation (7) has the well-known interpretation that the magnetic lines of
force ‘move with’, or ‘are frozen into’, the gas. The more accurate equation (89) means that
they move with, or are frozen into, the electron gas.

To put the argument leading to (89) more formally, we may write down the momentum
equations for the electrons and ions separately, as

n,m, (a(;;E+ve. Vve) = —Vp,—M—n,e(E+v,AB), (90)
nm, (%V;iw,.. Vvl.) — VM 4 1,Ze(E 1-V;B). (91)

Here, M is the rate of loss of electron momentum, per unit volume, by collisions with ions; it
may be supposed proportional to their mean relative velocity v,—v,, and therefore to (—j);
and, indeed, if we write M — —n,en, (92)
then 7 may be identified with the resistivity, in that (90) becomes Ohm’s law E = 5j under
uniform conditions with B = 0.

Note that the hydrodynamical momentum equation (5) is the sum of (90) and (91). This
is obvious as far as the right-hand sides are concerned if we accept that n, = n,Z. The
left-hand sides of (90) and (91) do not exactly add up to that of (5), although to a close
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approximation those of (5) and (91) are equal and that of (90) negligible; the exact
difference is physically the effect of the pressure of the current flow, namely, m,j2/e?*n,
along lines of current flow. Such a term of order ;2 is normally neglected, and certainly can
be in a theory of first-order perturbations to a state of zero current.

To obtain E, and hence dB/d¢, we now argue that, because the left-hand side of (90) is very
small compared with that of (91), while individual terms on their right-hand sides are of the
same order of magnitude, we can get a good approximation by putting that of (90) equal to 0,

ghving E-+v,AB = 1j— (Vp)n,e. (93)
Under stationary, uniform conditions this becomes
., isB

E_”J+nge’ (94’)

by (87) with v = 0. This well-known equation for the current j has solutions which consist of
the sum of the ‘ohmic current’ E/y and a so-called Hall current’ perpendicular to B. The
latter arises from the term in (94) owing to our substitution of v, for v, which can accordingly
be described as the Hall-current effect.

The relative importance of the two terms in (94) depends on the magnitude of the ratio

Bn,en. (95)

When this ratio is large, the Hall-current term is more important than the resistivity term.
The ratio can also be written v,/w,, where

w, = Bem,, o, =n,e*n[m,; (96)

here, w, is the gyro-frequency of the electrons (rate of spiralling about magnetic lines of
force), and v, is an average frequency of electron collisions with ions; for, by (86) and (92),

M = 7236277(‘76‘*“72) = (’)cmene(vemvi)i (97)

so that the rate of momentum loss of electrons per unit volume, by collision with ions, is equal
to w, times the mean value of their momentum in a frame in which the mean ion velocity is
zero.

Thus, the Hall-current effect is much more important than the electrical resistivity
whenever the magnetic field B is so large that the gyro-frequency of electrons greatly
exceeds their collision frequency. Taking 7 = 1047-# (Spitzer 1956) in (95), this requires

B> 106, T-% (98)

(Bin gauss, n,in cm~3, T'in °K), so that conditions of high temperature and low density are
precisely those in which the condition can be satisfied for reasonable field strengths.

In this case it may be of value to study the non-dissipative form of (93), with the resistivity
omitted—which gives equation (89). Substituting for v, in this from (87) and (88), we get

B curl B
o= curl{(v— e )AB}, (99)

an equation for B which, with (4), (5) and (6) for p, v and p, can be solved by steps forward
in time.

52 Vor. 252. A.
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We conclude this section by referring briefly to the effects besides resistivity which have
been neglected in reaching equation (99). These effects, mainly electron inertia and
departures from electrical neutrality, are known to be unimportant (Spitzer 1956) if the
frequency w is small compared with the ‘plasma oscillation frequency’,

4mn )\ * , -
W, = ( - ) ec = (6 x 10%nt) sec™ . (100)

e

9. HALL-CURRENT EFFECT ON MAGNETO-HYDRODYNAMIC WAVES

In §§2 and 7 we investigated how far compressibility interferes with the unidirectional
propagation of magneto-hydrodynamic waves, finding that it does not as far as the vorticity
component § is concerned. We ask now the same question about the Hall-current effect, but
in order to keep the analysis tractable we limit it to an incompressible fluid, particularly as
the effect of compressibility on its own has already been evaluated.

Accordingly, we use equation (99) for B, and equation (5) for v, but replace equation (6)
by p = const. = p,, so that (4) becomes

divv = 0. (101)

Then, when departures of B and v from uniform values B and 0 are regarded as so small
that their squares and products are negligible, equations (99) and (5) become

%’% — curl {(v—";z ?) ABO} (102)
ov (curl B)aB, B,. B)AI B,.VB
and Pog; = »—Vp+—~——4——ﬂ——— = ~V(/)+ e B P (103)
Now, taking the divergence of equation (103), we obtain
. B,.B
2 [ B Uit RN \
VI {p = ) 0, (104)
of which the only solution bounded throughout space is
B,.B
p+———4ﬂ = const. (105)

Equation (105) justifies the remark in §1, that magnetic pressure variations are exactly
balanced by those of the gas pressure for an incompressible fluid.
Accordingly, in axes such that B, = (B, 0, 0), equations (102) and (103) give

B J curl B ov B, /B
ot ~\_B°E7;c (V_ 4ﬂizee)’ 9t d4mp, Ox’ (106)
d(d B, 0 _ Bj v
whence ot (9—t+ dmn,e Ox l) V= 47p, 0x*" (107)
The coeflicient B3/4mp, in (107) is af, whilst
B, _ a3 po _ ajm;n; ,,, ﬂf
4mn,e Byn,e  Byne o’ (108)
where w; = '@0_7(7_2_@ (109)

2
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is the gyro-frequency of the ions (which is over 1800 times less than the gyro-frequency o,
defined in (96)).

Equation (107) has three dependent variables v, v, and v,, but these are linked also by
equation (101). To get convenient equations in only two varlables we may use ¢ and I"again,
since these (§2) determine v completely when A = 0. The curl of (107), and the derivative
of its x-component with respect to x, become, after the substitution (108),

0% a? 0 0%t 021" a} o 021
;?-t_g a)l 3tV2P ‘3%’ 2w ataif"l 0x?’ (110)

whence § itself satisfies

0? 0? at 0% 02
{(525 13x2) +5:_2’a723—xzw;§=0, : (111)

and I'satisfies the same equation.

Equation (111) shows that the Hall-current effect prevents even the vorticity component §
from being propagated one-dimensionally. The actual manner in which it is propagated can
be found, according to the theory of §§ 3 to 6, in terms of the geometry of the surface § whose
equation is G = 0, where by (111), (23) and (27)

= (0*—d?a?)? —a{®k?(w?|w?). (112)
Solving G = 0 for f%+7?2 (that is, k2 —a?), as
w2 1 /w? 2
2 S a2) 2
pPyt= =i (a% oc) a2, (113)

we see that § is a surface of revolution, with axis the a¢-axis and a plane of symmetry « = 0;
for o < w,, it has two sheets §; and S, in « > 0, lying respectively in the regions
-1 o, wo\*
0<a<<— (1+ ) and a>;(1——) R (114)
w; 1

w;

and two symmetrically placed sheets in & < 0. When, however, o > w,, the sheet .S, dis-
appears and only S| is present. Figure 6 illustrates the shape of § in @ > 0 for the values
0, % 3, 2,1,3, 3 and 10 of the ratio w/w,.

We see that the frequency w; is of critical importance for magneto-hydrodynamic waves,
as was found already by Astrém (1951). Note that waves with frequencies in this neigh-
bourhood can justifiably be treated by the equations of § 8, because w; is always very small
compared with the plasma oscillation frequency v, of equation (100), provided only that

B, < (6n,}) gauss. (115)

This condition is amply satisfied in all conditions for which the waves have been discussed,
and is fully compatible with (98).

The limit o/w; = 0, when §; and S, both become the plane o = w/a,, is the case of the
‘perfectly conducting fluid’, transmitting waves one-dimensionally in the x-direction. As
w/w; increases from zero, we see that the plane splits into two surfaces §; and S,, so that the
single system of waves splits into two separate systems. It is the appearance of coupling
terms in the equations (110) for £ and I" which effects this splitting.

The two systems of waves are illustrated in figure 7 for a fairly small value of w/w;, namely,
1. The waves corresponding to ) lie within a cone N, of semi-angle 4-8°, on which the

52-2
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surfaces of constant phase have cusps, the situation being analogous to one studied in §7
except that the ‘bump’ on S, faces the other way, so that the attitude of its reciprocal polar
is reversed. The waves corresponding to S, lie within a wider cone N,, of semi-angle 14-5°,
and have no cusps, since the Gaussian curvature vanishes nowhere on S,.

EXE
-

o

N(BZ+?)

o4

Ficure 6. Hall-current effect on the shape of §. For w/w; = 10, 3, 2, 1, %, 4, 1 and 0, S is obtained
by rotating about the a-axis these curves together with their reflexions in the plane « = 0. The
unit of wave number is w/a,. The points of inflexion, marked A, become monoclastic curves on §
after rotation.

Figure 8 shows how the semi-angles, #, and 0,, of the cones within which lie the wave
systems corresponding to S} and §,, vary with w/w;,. These graphs are obtained from the

relationships
©_ 2tan f, — sind,. (116)

o; (1—2tan®d,) (1+tan?f))?

The above geometrical discussion gives a sufficient indication of how the Hall-current
effect spreads out the waves in the case of a source of given frequency. Taking compressibility
into account as well involves many more complications, including several more cuspidal
edges, but makes little essential difference to the conclusions.

Since, however, the Hall-current effect renders the waves dispersive (the G of equa-
tion (112) being an inhomogeneous function of ¢, £, ¥y and w, and the solution obtained being
indeed quite different for different values of w), we cannot at this stage say what will happen
if a source of finite duration is applied instead of one varying sinusoidally with time. We
would like to know how, if a source of finite duration is Fourier-analyzed with respect to
time, the components of different frequencies spread out from the source.

The answer to this question is given by the theory of appendix B. This shows that the
surfaces of constant phase for waves of a given frequency will be as obtained above, but that
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Ficure 7. Hall-current effect on surfaces of constant phase. For w/w; = 1 this shows two surfaces of
constant phase generated by S, and two generated by §, (only the part with x > 0in each case).
The phases, from left to right, are in the ratios 1:1-08:1:1-08,

90°—
60— 6,
30—
asymptote 19-47°
6,
| | | !

Ficure 8. Variation with w/w; of the semi-angles 6, and 6, of the cones N, and N,.

! ! | |
0 05 10 15 20
X

Ficure 9. Dispersion due to Hall-current effect. For w/w; = } this shows the wave pattern
at time ¢ after the operation of a source of finite duration. The unit of distance is a,¢.
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the distance of travel of any wave packet from the source after time ¢ will be equal to ¢ times
its group velocity VG/(0G/dw). Applied to the problem of this section, with w/w; = %, this
gives a pattern of waves asin figure 9, with ¢, fused as the unit of distance. Figure 9isobtained
from the fact that each wave element in figure 7 has travelled a distance from the origin equal
to ¢ times its velocity of energy propagation, while retaining its setting and spacing as given
by the value of k. Figure 9 emphasizes the high degree of dispersion which the Hall-current
effect may produce even at quite low frequencies.
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APPENDIX A. VELOCITY OF ENERGY PROPAGATION FOR A PLANE WAVE
IN AN ANISOTROPIC MEDIUM

We suppose that, in a homogeneous conservative system, a plane wave
u = aexp [i(t+ax+Lfy-+yz)] (A1)

is a possible solution of the equations of motion for each («,f,7) in some region of wave-
number space, provided that the frequency o is a certain function of (a,/,y) given by an

equation G(a,f,7,0) = 0. (A2)
The derivatives of w with respect to a, f,y are given by the equations

do  0Gjoa dv - 9Gjof  dw _ 0G/dy (A3)
do~ 0Gjdw’ T GPw> dy 9Gjiw’

We now determine the x-component U, of the velocity of energy propagation. This is

U — energy crossing unit area of x = 0 é | say. , ™

~ energy per unit volume
The energy E per unit volume, for given (a,f,7), 1s a fixed multiple of the square of the wave
amplitude, say E = Eya®. (A5)
To find I, we suppose that such additional (non-conservative) forces are applied as will

attenuate the wave according to the law

u = aexp [1(wt+oax+py+yz) — Sex], (A6)
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where ¢ is very small compared with «, £ and y. Then the energy per unit volume at (x, y, z)

becomes E = Eya®e*, (A7)
and the total energy per unit area of the region x > 0 is

H— f Edx — 2o 6“ (A8)

To find the required additional forces, note that the substitution of a4+ }ie for « in (A1),
which yields (A 6), would produce a motion consonant with the equations of motion only if
v were simultaneously changed to - He dv/oa, (A9)

where dw/dx is given by (A 3). This would mean that, in the equation of motion of every
particle of which the system is composed, the inertial force (minus the mass m times the
acceleration ¥) would change from mw?r to

(a)+ 216%)) r = mw’r -+ (e gg) mir. (A10)

This would be exactly as if an additional force equal to (¢ dw/da) times its momentum were
applied to every particle.

Now, since the wave in x > 0 is attenuated, and has fixed total energy (A 8) per unit area,
the sum of the rate of working of these additional forces, per unit area of the region x > 0, and
1, the rate of energy transmission across unit area of x = 0, must be zero. Hence 7 is minus
this rate of working, that is,

1= -3(c aa) i) £ = — (o (;w)QT (A11)

where T" = {Xmi? is the total kinetic energy per unit area of the region ¥ > 0. But in any
progressive wave the averaged kinetic and potential energies are equal. Therefore 27 = H,
whence, by (A11) and (A8),

dw 00
I=— (a)H~ ~Eyatey, (A12)
and by (A4), (A5) and (A3)
sziz do _ dG[da (A13)

E- "9 9Gje

Similar results for U, and U, give finally
VG

U= FIeT (A14)
as stated in § 6.
In cases when o is known as an explicit function of (a,f,y) we can write more simply
do do Jdw
U= (G aa) (A15)
a form which makes obvious the analogy with the one-dimensional case. The minus sign is
present because only plus signs occur in (A 1).

APPENDIX B. APPLICATION OF THE METHODS OF THIS PAPER
TO PROBLEMS WITH ZERO INITIAL CONDITIONS
In this appendix we depart from the exclusive discussion in the paper of harmonic time
variation, to consider problems where the dependent variable « is everywhere zero until an
initial instant, ¢ = 0, after which a source begins to operate. This may be a source of finite, or
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even infinitesimal, duration; or it may be a sinusoidally varying source maintained for all
¢t > 0. The latter case must yield, as ¢ — oo, the solution satisfying the radiation condition,
which thus will be determined by an approach alternative to that of § 6.
The equation to be solved is more general than (23), namely
(82 02 02 02 )

9}‘2,9?2,‘@‘2,‘3—23 u=f(x,9,21). (B1)

Accordingly, a fourfold Fourier integral expression

P ﬁ; f: f:o f:exp [i(ox -+ By +yz+08)] (2, B, 7, ) daedf dy do (B2)

for f is necessary. Then, with

u:f ﬁ ff f°_° exp [i(ax+fy+yz-+08)] Ula, f,7, ) dadfdy do, (B3)
we have Gl = % (Ba)

(just as at the beginning of § 3), and we have to pick the solution such that u = 0 for £ < 0.
(German type is used in this appendix for four-dimensional analogues of three-dimensional
quantities appearing in the paper.)

Now we know that the source strength { = 0 for ¢ < 0, whence its transform,

—vot | [ expl-ilex+py+rzranlitny,z o dedydzds,  (B3)

is a regular function of w (for each a, §, y) throughout the lower half of the complex w-plane;
for in (B5) the integral with respect to ¢ is the same as one from 0 to oo and therefore
converges uniformly when o < —¢ (so that [e~i¢!| < e~¢) for any ¢ > 0. On the other hand,
& may have singularities for real w, which will correspond as described by Lighthill (1958) to
the behaviour of { as £ - +co. One can avoid these singularities in the integral (B2) by
taking the path of integration with respect to w slightly below the real axis, for example,
along aline v = —¢. Note that the fso produced does vanish for ¢ < 0, since the regularity of §
in the lower halfof the w-plane means that the path of integration can be deformed into alarge
semi-circle in that region, the integral over which vanishes for ¢ < 0 by Jordan’s lemma.
We now apply similar considerations to z and 11, but until the last paragraph we treat only
the case when there is no complex value of » for which G vanishes (with real a, £, y). Then we
can obtain a solution for  which is zero for ¢ < 0 by putting U = §/G (from (B4)), and
integrating on Jw = —¢in (B 3). Thisis because U, like §, has then nosingularities in the lower
half of the w-plane, and so the Jordan-lemma argument can still be applied. The resulting

solution, ~ig+e
u—f f f f exp [i( ocx+,é’y+yz+a)t)] dadﬂdyda), (Be,

—ig—o

would also be obtained if a Laplace-transform approach were used.

The asymptotic form of (B 6) is next obtained as 7 — 0o and ¢ — co simultaneously; more
precisely, we let the point (x,y, z, ) tend to infinity along a line [ in four-dimensional space-
time whose inclination to the time-axis is less than i7. The method of § 3 is followed very
closely, the main difference being merely the extra dimension.
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Rotating the axes so that the x-axis is along [ gives

U= Jffdﬂdy dwfg—ei“" da, (B7)

the new a being a linear combination of the old «, £, y and » which has positive coefficient of
. It follows that the path of integration with respect to the new « lies slightly below the real
axis.

We now suppose first that f(x, y, z, #) vanishes outside a bounded region of space-time, so
that the source is of finite duration. Then & possesses no singularities on the real axis, and the
onlysingularities of the integrand are zeros of G. In thiscase we estimate the innerintegral in
(B7) by shifting the path of integration to Ja = +#% (which renders it O(e~*) and hence
negligible), and are left with 271 times the sum of the residues of the integral at the zeros of G.
Thus, 5
u:2ﬂifff6qei“xdﬁdydw+0(x‘N), (BS)

where the integral is over the whole hypersurface @ whose equation is G = 0.

The integral (B8) is next estimated by the method of stationary phase as a sum of con-
tributions from points on & where the normal is in the x-direction. If these are all points
where the principal curvatures (say, after rotation of axes, &, «, and «,) are non-zero, we
obtain, as the contribution from the mth point (@,,, £, V> @)

U, — 2mi-S- eiam I {(—z—ﬁ—)%exp [$misgnk ]} (B9)
" G, Frvvo WX [K gl : a

In a form invariant under rotation of axes, (B9) becomes

y (2t (CTexp [i(ax+ﬂy+7Z+wt)]}
m tg \\ IDGIN/I'QI “=“mvﬂ=ﬂf»a.

Y=Ym, O=wm

(B10)

Here t = /(x2+y2+ 22+ #2), which is 7(1+v~2) if v is the ratio of 7 to ¢ on [; C is a phase
factor of modulus 1; OG is the gradient of G in Cartesian 4-space; and & is the Gaussian
curvature of the hypersurface &, which can be expressed in an invariant form similar to that
noted at the end of § 3—each element of the matrix of products of first derivatives of G being
multiplied into the corresponding co-factor of the matrix of second derivatives, and divided
by |OG|. The solution  is asymptotically a sum of terms (B10) over all points on & where
the normal to the hypersurface is parallel to !, provided § is non-zero at each. No other
principal of selection (like that of § 6) governs the choice of points.
The condition that [ be normal to & can be written

G
7(; s
which shows that r/z is the energy propagation velocity VG/(dG/dw). This emphasizes again
that energy spreads out radially from the source with this velocity.

The attenuation like 7~# along any radius vector is characteristic of pulses propagated
three-dimensionally outward in a dispersive medium. For the pulse necessarily contains
elements in a range of frequencies, and therefore with a range of wave speeds even for a fixed
direction. The region of disturbance therefore grows like a hollow sphere (possibly flattened

r:VGg =t: (B11)
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in shape) whose internal and external radii increase in proportion, so that its volume
increases as 73, the energy density decreases as 73 and the amplitude as r%.

If, however, the waves are non-dispersive, G is homogeneous, so that the hypersurface &
given by G' = 01is a hypercone, that is, a developable hypersurface, with & identically zero. Its
generators are lines € joining the origin of space-time to points of the surface S, which is given
by G = 0 for fixed w. A hyperplane B touching & does so along a whole such line 2. One
finds then an asymptotic contribution (compare § 5) of order t~! along all such radii as are
normal to one of these hyperplanes 9§, but only along these; furthermore, the contribution
comes from the whole of the line of tangency &.

The physical explanation is that for non-dispersive waves the disturbance due to a pulse at
time ¢ == 0 is propagated at a fixed speed in each spatial direction, components of all
frequencies travelling at the same speed (or possibly there might be a finite set of speeds,
each being the energy propagation velocity for waves whose fronts are in a particular
direction). Hence the radial extent of the disturbance does not increase ; its volume increases
as 7%, its energy density decreases as 7~2 and its amplitude as r~1.

After this discussion of sources of finite duration in the dispersive and non-dispersive cases,
we note the results for a harmonically oscillating source of frequency Qstarted at z = 0. Then

f(%,9,2,) = f(%,y,2) ¥ H(1), (B12)
with H(#) = 1 for ¢ > 0 and 0 for ¢ < 0. This gives

B fo,0) = gy B (B13)

throughout the lower half of the complex w-plane. With this § the asymptotic evaluation of
(B6) can be carried out as follows. Take first a fixed value of w (with imaginary part —¢);
then asymptotically integrate with respect to «, £ and y as in § 6 (where also a frequency with
imaginary part —e¢ was used), leading to the result of theorem 2. Next, divide by 2mi
(w—Q) and integrate with respect tow. As¢— -+ oo thisreplaces w by Q, the given frequency.
Thus we retrieve the conclusions of theorem 2, regarding the solution satisfying the
radiation condition, if we approach this solution by ‘switching on and waiting’. This might
have been expected, since the e® factor inserted in the source strength to obtain theorem 2
could be regarded as a particular,somewhat languid, method of ‘switching on and waiting’.
We conclude this appendix by taking up the possibility (excluded at the beginning) that
G = 0 for some complex w. For given real «, £, y such w would occur in conjugate pairs, with
one w from each pair situated in the lower half of the complex plane. Then to get # = 0 for
¢t < 01t is necessary to take the path of integration with respect to w in (B6) below all these
poles of the integrand as well as below those on the real axis. Therefore, when the path is
deformed into the real axis and beyond to carry out the procedures described above, there
are in general residues from these poles to be taken into account; these increase exponentially
with time. Thus, whenever the source includes Fourier components with wave numbers in
the range for which there exist solutions of G = 0 (thatis, plane waves) of complex frequency,
an exponentially increasing disturbance will ensue. This is the mathematical condition
corresponding to a physical system unstable to disturbances in this range of wave numbers.
The systems discussed in earlier paragraphs of this appendix were stable systems without
complex-frequency solutions of G = 0.
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